Магнитосфера Земли

 

Магнитосфера Земли

Геомагнитное поле (магнитосфера Земли) формируется в результате вращения жидкого внешнего ядра Земли, которое является хорошим проводником электрического тока, так как состоит в основном из железа и никеля. Ось геомагнитного поля не совпадает с географическими полюсами планеты.

Общие сведения о магнитосфере Земли

Упрощенная схема геомагнитного поля

Упрощенная схема геомагнитного поля

Геомагнитное поле защищает нашу планету от роя заряженных частиц солнечного происхождения (солнечного ветра). Благодаря геомагнитному полю, наша планета теряет гораздо меньше атмосферы по сравнению с другими телами Солнечной Системы, где отсутствует подобное магнитное поле (к примеру, Марс и Венера). Форму поля задаёт солнечный ветер: в направлении Солнца его радиус минимален, в то время, в тени Солнца следы поля протягиваются на миллионы километров. Заряженные элементарные частицы солнечного ветра вместе с космическими лучами после отклонения геомагнитным полем скапливаются в определенных областях, которые называются радиационными поясами Земли. В западной литературе эти пояса часто называются поясами Ван Аллена, в честь американского физика, который впервые их заподозрил в 1958 году на основе измерений спутника “Экспловер-1”. Радиационные пояса представляют собой большую опасность для электроники и электросистем космических аппаратов, в связи с этим инженеры стараются минимизировать их нахождение внутри поясов.

Данные пояса делятся на две области: внешние и внутренние пояса

Данные пояса делятся на две области: внешние и внутренние пояса

Первые расположены на высоте около 17 тысячах км от поверхности Земли и состоят в основном из отрицательно заряженных элементарных частиц (электронов), вторые находятся в 4 тысячах км от поверхности Земли и состоят в основном из положительно заряженных частиц (протонов). Расстояние радиационных поясов от поверхности Земли находится в сильной зависимости от географического положения. Ближе всего к поверхности Земли радиационные пояса проходят над Бразилией (Южно-Атлантическая геомагнитная аномалия или Бразильская геомагнитная аномалия).

Карта плотности заряженных элементарных частиц на высоте около 0,5 тысяч км от поверхности Земли по данным спутника ROSAT

Карта плотности заряженных элементарных частиц на высоте около 0,5 тысяч км от поверхности Земли по данным спутника ROSAT

На вышеприведенной карте хорошо видно, что наибольшая плотность таких частиц наблюдается как раз над Бразилией. В этой области сила геомагнитного поля на уровне моря подобна характеристикам геомагнитного поля над другими областями на высоте около тысячи километров.

Регулярные наблюдения за аномалией показывают снижение в ней интенсивности геомагнитного поля при одновременном увеличении её площади

Регулярные наблюдения за аномалией показывают снижение в ней интенсивности геомагнитного поля при одновременном увеличении её площади

Южная Атлантическая геомагнитная аномалия создаёт значительные помехи в работе низкоорбитальных телескопов. Так телескоп “Хаббл” не осуществляет наблюдения в этой области, а на снимках телескопа WISE в этой области наблюдается множество артефактов (следов от заряженных частиц), на которые часто обращали внимание участники волонтерского проекта по поиску гипотетической девятой планеты.

Колебания геомагнитного поля и их влияние на биосферу

Так как солнечный ветер является переменным по интенсивности и составу элементарных частиц (наиболее сильные ливни рождаются в мощных солнечных вспышках), то и геомагнитное поле испытывает постоянные колебания. Во время особо сильных вспышек на Солнце частицы солнечного ветра могут проникать в верхние слои атмосферы и вызывать сияния в виде зеленоватых всполохов (полярные сияния). Чаще всего это происходит в полярных регионах Земли, где геомагнитное поле является наиболее слабым (именно там находятся геомагнитные полюса). Хотя при особо сильных солнечных вспышках полярные сияния наблюдаются даже в тропиках (к примеру, во время геомагнитной бури 1859 года полярные сияния наблюдались в тропическом Карибском море). Возмущения геомагнитного поля Земли вызывают не только полярные сияния, но и могут приводить к сбоям электроники, авариям на линиях электропередач и даже к катастрофам (к примеру, вызвать отказ навигационных систем самолета или выключение системы аварийной защиты атомной электростанции). В дополнение на тему влияния геомагнитного поля на земную жизнь можно отметить, что многие животные на Земле используют геомагнитное поле для навигации (к примеру, перелетные птицы). Очевидно, что геомагнитные возмущения оказывают влияние и на центральную нервную систему человека (в человеческом организме присутствует небольшое количество железа, именно благодаря ему, кровь человека обладает красным цветом, а нервная система представляет собой инфраструктуру для передачи электромагнитных импульсов). Художественную иллюстрацию о том, какое сильное влияние геомагнитное поле оказывает на биосферу Земли, можно посмотреть в фильмах-катастрофах “Земное ядро” и “Знамение”.

Изменения в геомагнитном поле происходят не только по причине колебаний в интенсивности солнечного ветра. Другой причиной подобных изменений являются слабоизученные процессы, которые происходят в ядре нашей планеты.

Открытие геомагнитного поля

Впервые закономерность того, что намагниченные предметы располагаются в строгом направлении, было открыто в Китае ещё несколько тысяч лет назад. Это открытие привело к изобретению компаса, который оказал важнейшее влияние на морскую навигацию во времена Великих географических открытий (навигация по астрономическим объектам затруднена из-за частой облачности). Первоначально считалось, что северный геомагнитный полюс совпадает с направлением на Полярную звезду. Однако во время плавания Колумба к берегам Американского континента было отмечено, что эти направления различаются на 12 градусов.

В месте расположения геомагнитных полюсов стрелка компаса может принимать вертикальное положение. В северном геомагнитном полюсе стрелка компаса направлена вниз, а в южном геомагнитном полюсе наоборот вверх. В связи с асимметричностью геомагнитного поля, прямая линия, которая соединяет геомагнитные полюса не проходит через центр Земли.

Северный геомагнитный полюс был впервые обнаружен в 1831 году английским мореплавателем Джоном Россом, южный геомагнитный полюс соответственно в 1841 году его племянником (Джеймсом Россом). С тех пор исследования показали, что оба полюса испытывают ежегодные перемещения по поверхности Земли.

Северный геомагнитный полюс за последние 500 лет переместился из района Канадского архипелага в район Центральной Арктики.

Карта перемещения северного геомагнитного полюса в 1590-2020 годах по данным NOAA (на основе прямых измерений, изучения остаточной намагниченности древних пород и моделирования)
Другая версия этой карты
Южный геомагнитный полюс в тоже время переместился с Антарктического континента в океан
В последние годы скорость движения северного геомагнитного полюса стала рекордно высокой за последние полтысячи лет
В тоже время скорость движения южного геомагнитного полюса остаётся сравнительно стабильной
Кроме того в последние годы наблюдается стабильное падение интенсивности геомагнитного поля

Инверсия геомагнитного поля

Аномально высокая скорость движения северного геомагнитного полюса и уменьшение интенсивности геомагнитного поля в последние годы порождают спекуляции на тему скорой инверсии геомагнитного поля. Инверсией геомагнитного поля называют процесс перестановки местами южного и северного геомагнитного полюсов. В нормальном состоянии геомагнитного поля северный геомагнитный полюс находится вблизи северного географического полюса. В обратном состоянии же наблюдается противоположная картина: северный геомагнитный полюс находится вблизи южного географического полюса.

Изучение намагниченности древних пород позволило обнаружить, что за последние 160 миллионов лет на Земле происходили сотни инверсий геомагнитного поля
Изучение намагниченности древних пород позволило обнаружить, что за последние 160 миллионов лет на Земле происходили сотни инверсий геомагнитного поля
Изучение намагниченности древних пород позволило обнаружить, что за последние 160 миллионов лет на Земле происходили сотни инверсий геомагнитного поля
Схемы инверсий геомагнитного поля за последние 5 и 50 миллионов лет

Во времени наступления инверсий не обнаружено никакой периодичности (в отличие от, к примеру, 22-летней периодичности в инверсиях магнитного поля Солнца, которая равна двухкратному периоду солнечной активности).

Типичное время между инверсиями составляет от 0.1 до 1 миллиона лет, сами инверсии длятся между 1 и 10 тысячами лет. Предполагается, что во время инверсий происходит очень сильное ослабление геомагнитного поля, и, следовательно, создаётся нешуточная угроза земной жизни (частицы солнечного ветра в больших количествах проникают в земную атмосферу). В тоже время не отмечено никакой корреляции между массовыми вымираниями земных видов и периодами инверсий геомагнитного поля.

Последняя достоверная инверсия геомагнитного поля случилась 780 тысяч лет назад. Её длительность составила от 1200 до 10000 лет в зависимости от географического положения изученных пород с остаточной намагниченностью. С другой стороны изучается возможность более свежей кратковременной инверсии геомагнитного поля, которая случилась всего 41 тысячу лет назад. Событие получило название Laschamp, так как впервые было обнаружено в 60х годах 20 века в остаточной намагниченности лавового потока с таким названием во Франции. Позже следы этой инверсии были обнаружены и в других местах Земли. Длительность инверсии составила 250-440 лет, во время неё геомагнитное поле было ослаблено на 75%.

Схема движения геомагнитных полюсов во время этой инверсии

Схема движения геомагнитных полюсов во время этой инверсии

В тоже время в спокойные периоды геомагнитные полюсы испытывают лишь хаотичный дрейф вблизи географических полюсов.

Источник

Поделиться ссылкой:

Ссылка на основную публикацию
Adblock
detector