Лазерные двигатели

Лазерные двигатели — прорыв в области космических полетов. Лазерным двигателем называют разновидность двигателя на лучевой тяге, где источником энергии является лазерная система (обычно – наземного базирования), отделенная от массы, вступающей в реакцию. Эта разновидность двигателей отличается от традиционных ракетных двигателей на химическом топливе, где и источником энергии, и вступающей в реакцию массой является твердое или жидкое топливо, размещенное на борту корабля.

История

Основы концепции, скрытые в идее фотонного двигателя в виде «паруса», были разработаны Эйгеном Зенгером и венгерским физиком Георгом Марксом. Концепция двигателя, использовавшего ракеты с лазерной подпиткой, были развиты Артуром Кантровитцем и Вольфгангом Мёкелем в 1970-х годах. Изложение идей Кантровитца о лазерном двигателе было опубликовано в 1988 году.

Системы лазерных двигателей могут передавать импульс космическому кораблю двумя разными способами. Первый подразумевает использование давления фотонов для передачи импульса по принципу солнечных парусов, в том числе – работающих под давлением лазерного излучения. Второй метод использует лазер для того, чтобы помочь кораблю избавиться от массы, подобно обычной ракете. Этот метод предлагают куда чаще, но у него присутствует фундаментальное ограничение в виде конечной скорости полета корабля, связанной с формулой Циолковского.

Солнечные паруса для перемещения под давлением излучения лазера

Солнечные паруса для перемещения под давлением излучения лазера являются образцами двигателей на лучевой тяге.

Солнечный парус для движения под давлением лазера

Солнечный парус в космосе
Солнечный парус в космосе

Солнечный парус для движения под давлением лазера – это парус, напоминающий солнечный, сделанный из тонкой ткани с отражательной способностью. В отличие от солнечного, он движется, скорее, за счет давления лазерного луча, чем солнечного света. Преимущество двигателей с применением солнечных парусов подобного типа состоит в том, что кораблю не нужно нести на борту какой бы то ни было источник энергии или вступающую в реакцию массу, из чего следует, что ограничений формулы Циолковского, связанных с набором высокой скорости, удается избежать. Использование парусов для движения под давлением лазера было впервые предложено Георгом Марксом в 1966 года в качестве метода для межзвездных путешествий, позволяющих избежать крайне высокого относительного расхода топлива. Идея была тщательно проанализирована физиком Робертом Форвардом в 1989 году. Дальнейший анализ концепции был выполнен Джеффри Лэндисом, Юджином Маловым и Норманном Матлоффым, Даной Эндрюс и другими.

Солнечный парус
Солнечный парус

Луч должен иметь достаточно большой диаметр, так как только некоторые частицы пройдут мимо паруса из-за дифракции, а лазер или антенна, принимающая микроволны, должна иметь достаточную устойчивость ориентации, так как корабль может достаточно быстро наклонять парус, чтобы следовать за центром луча. Это играет куда более важную роль, когда речь заходит о путешествии к другим планетам и звездам, полете по касательной, приземлении и возвращении. Лазер также может быть крупной фазированной решеткой для малых устройств, получающих энергию напрямую из солнечных лучей.

Солнечный парус для движения под давлением лазера был предложен в качестве двигателя для малого межзвездного корабля в рамках проекта «Breakthrough Project».

Солнечный парус для движения с использованием лазера и рециркуляции фотонов

Физики Метцгар и Лэндис предложили модификацию солнечного паруса, где фотоны будут отражаться от паруса и повторно использоваться, отражаясь обратно на парус посредством стационарного зеркала. Она получила название «Лазерный парус многократного отражения». Это увеличивает силу, производимую рециркуляцией фотонов, приводя к многократному росту силы излучения при той же мощности. Также существует конфигурация паруса с использованием многократно рециркулирующих фотонов, где применяется ступенчатая линза, установленная вокруг генератора лазера. Там лазер освещает парус корабля, увеличивая его скорость, затем свет отражается обратно через ступенчатую линзу и поступает на более крупный рефлектор, меняя направление корабля. Свет лазера многократно отражается туда и обратно, позволяя увеличить силу передачи. Линза становится гораздо более стабильной, так как практически исключено влияние импульса лазерного луча.

Лазерный фотонный двигатель малой тяги

Лазерный фотонный двигатель малой тяги (ЛФДМТ) – последнее изобретение, развившееся из лазерного паруса многократного отражения, где активный лазер является средством резонанса, необходимого для формирования оптической пустоту между двумя зеркалами. Предполагается, что ЛФДМТ будет способен обеспечить соотношение тяги к мощности, (единица, измеряющая эффективность вспомогательного двигателя по отношению к преобразованной в импульс мощности) приближенное к таким традиционным аналогам, как электрические двигатели малой тяги или двигатели малой тяги с лазерной абляцией.

Концепция лазерных двигателей
Концепция лазерных двигателей

Ракеты с лазерной подпиткой

Существует несколько разновидностей лазерных двигателей, где лазер используется, как источник энергии для импульса, необходимого расположенному на борту горючему. Применение лазера в качестве источника энергии означает, что подаваемая энергия не ограничена лишь химической энергией топлива.

Лазерная ракета с двигателем на основе теплообмена

Лазерная ракета с термическим двигателем – подвид ракет с термическим двигателем, где топливо нагревается с помощью энергии, создаваемой извне лазерным лучом. Луч нагревает твердый теплообменник, который, в свою очередь, нагревает жидкое топливо, превращая его в раскаленный газ, выпускаемый через обычные сопла. Это делает ее похожей на ракету с ядерным или солнечным термическим двигателем. Применение крупногабаритного теплообменника позволяет лазерному лучу светить прямо на него, минуя фокусировку при помощи оптики корабля. Двигатель с теплообменником в работе имеет преимущество, так как может работать одинаково качественно с лазером с любой длиной волны и типом (непрерывным или импульсным), а его КПД приближается к 100 %. Ограничением для данного двигателя является материал теплообменника и потери излучения при относительно низких (1 000 – 2 000 С°). Для данной температуры удельный импульс будет максимально увеличен при минимальной молекулярной массе вещества, вступающего в реакцию, а также – наличии водородного топлива, обеспечивающего достаточный импульс в течение 600-800 секунд, чего вполне достаточно даже для того, чтобы ракета с одной ступенью смогла обогнуть низкую орбиту Земли. Концепция лазерной ракеты с двигателем на основе теплообмена была разработана Джордином Кэром в 1991 году. Микроволновый тепловой двигатель с похожей концепцией был разработан независимо Кевином Паркином из Калифорнийского университета в 2001 году.

Термоядерные двигатели
Термоядерные двигатели

Вариацию этого проекта предложили профессор Джон Сайнко и доктор Клиффорд Шлехт в качестве резервной системы безопасности для аппаратов на орбите. Баки с ракетным топливом прикреплялись снаружи, и выхлопные сопла работали с каждым из них, не задевая астронавтов или инструменты. Лазерный луч с космической станции или шаттла испарял находящееся в баках топливо. Выхлопные газы выбрасывались позади экипажа или инструмента, притягивая цель ближе к источнику лазерного луча. Для остановки сближения второй лазер с другой длиной волны охлаждает внешнюю обшивку баков с горючим.

Читайте так же:  8 космических технологий будущего

Абляционный лазерный двигатель

Абляционным лазерным двигателем называют разновидность двигателя на лучевой тяге, где внешний импульсный лазер применяется для воспламенения плазменного факела в металлическом топливе и последующего создания тяги. Измеряемый удельный импульс малых АЛД очень велик и доходит до 5 000 с (49 кН*с/кг). В отличие от аппарата с солнечным парусом, разработанного Ликом Майрэбо и использующего воздух в качестве топлива, АЛД можно использовать в космосе.

Лазерные технологии NASA
Лазерные технологии NASA

Вещество путем абляции импульсным лазером удаляется напрямую с твердой или жидкой поверхности. В зависимости от длительности импульса и плотности потока лазера, вещество может быть просто нагрето, испарено или превращено в плазму. Абляционный двигатель будет работать и в воздухе, и в вакууме. Удельный импульс составляет от 200 до нескольких тысяч секунд, что становится возможным за счет верного выбора топлива и характеристик лазера. Среди вариаций этой технологии – лазерный двигатель с двойным импульсом, где один импульсный лазер подвергает абляции вещество, а другой – нагревает до газообразного состояния; лазерный микродвигатель, где малый лазер на борту подвергает абляции очень малое количество топлива, достаточное для маневра и контроля высоты; очиститель от космического мусора, где лазер подвергает абляции частицы космического мусора, находящиеся на низкой околоземной орбите, изменяя их орбиты и вынуждая их снова войти в атмосферу.

Исследовательский центр в области ракетных двигателей при Университете Алабамы в Хантсвилле занимался разработками в области АЛД.

Импульсный плазменный двигатель

Высокоэнергетический импульс, сфокусированный на газе или твердой поверхности, окруженной газом, приводит к его разложению. Это приводит к расширяющейся ударной волне, поглощающей энергию лазера на фронте ударной волны (происходит т.н. детонационное горение, поддерживаемое лазером или ДГПЛ-волна), после чего следует расширение горячей плазмы за пределы фронта ударной волны и передача импульса кораблю. Импульсный плазменный двигатель, использующий воздух, как рабочую среду, является простейшим примером лазерного двигателя с аэродинамической накачкой. Космический аппарат с солнечным парусом, разработанный Ликом Майрэбо из Политехнического института Ренсселера и установивший мировой рекорд, работает по этому принципу.

Другая концепция импульсного плазменного двигателя была исследована японским профессором Хидэюки Хорисавой.

Лазерные двигатели на инерционном лазерном топливе
Лазерные двигатели на инерционном лазерном топливе

Плазменный двигатель с постоянной длиной волны

Непрерывный лазерный луч, сфокусированный на потоке газа, создает стабильный поток плазмы. После этого расширяющийся раскаленный газ выбрасывается через обычные сопла, создавая тягу. Так как плазма не контактирует со стенками двигателя, можно добиться сверхвысоких температур газа, как в случае с газофазным ядерным реактивным двигателем. Однако, для достижения высокого удельного импульса топливо должно обладать малой молекулярной массой. Как правило, в наши дни используется водород, позволяющий добиться удельного импульса в 1 000 секунд. Плазменный двигатель с постоянной длиной волны не лишен недостатков, так как лазерный луч должен быть точно сфокусирован на абсорбционной камере, чего можно добиться либо при использовании дипольных отражателей, либо сопла определенной формы. Эксперименты с этими видами двигателей проводились в 1970-1980-х годах, в основном, доктором Деннисом Кифером из Института Космоса при Университете штата Теннеси и профессором Германом Крайером из Иллинойского университета в Урбане-Шампейне.

Лазерные двигатели в применении
Лазерные двигатели в применении

Лазерный электродвигатель

Широкий класс двигателей, где мощность лазерного луча преобразуется в электричество, дающее энергию для работы космическим электродвигателям, называется лазерными электродвигателями.

Небольшой квадрокоптер летал в течение 12 часов 26 минут, заряженный лазером мощностью в 2 250 Вт (менее половины от нормальной рабочей мощности) и используя 170-ватные фотоэлектрические батареи в качестве приемника питания. Также был продемонстрирован лазер для зарядки батарей, за счет которых беспилотный летательный аппарат мог находиться в воздухе 48 часов.

В космонавтике лазерный электродвигатель составляет конкуренцию солнечному или ядерному электродвигателю среди других двигателей малой тяги для полетов в космос. Однако Лик Майрэбо предложил лазерный электродвигатель с большой тягой, применяющий магнитную гидродинамику для преобразования энергии лазера в электричество и последующей электризации воздуха вокруг корабля для создания тяги.

Ссылка на основную публикацию